A computational study of the effect of vasomotion on oxygen transport from capillary networks

Daniel Goldman, Aleksander S. Popel

Research output: Contribution to journalArticlepeer-review

Abstract

The objective of this study was to investigate the effect of arteriolar vasomotion on oxygen transport from capillary networks. A computational model was used to calculate blood flow and oxygen transport from a simulated network of striated muscle capillaries. For varying tissue oxygen consumption rates, the importance of the frequency and amplitude of vasomotion-induced blood flow oscillations was studied. The effect of myoglobin on oxygen delivery during vasomotion was also examined. In the absence of myoglobin, it was found that when consumption is high enough to produce regions of hypoxia under steady flow conditions, vasomotion-induced flow oscillations can significantly increase tissue oxygenation and decrease oxygen transport heterogeneity. The largest effect was seen for low-frequency, high-amplitude oscillations (1.5-3 cycles min-1, 90% of steady-state velocity). By contrast, at physiological tissue myoglobin concentrations, vasomotion did not improve tissue oxygenation. This unexpected finding is due to the buffering effect of myoglobin, suggesting that in highly aerobic muscles short-term storage of oxygen is more important than the possibility of increasing transport through vasomotion.

Original languageEnglish (US)
Pages (from-to)189-199
Number of pages11
JournalJournal of Theoretical Biology
Volume209
Issue number2
DOIs
StatePublished - Mar 21 2001

ASJC Scopus subject areas

  • Statistics and Probability
  • Modeling and Simulation
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)
  • Agricultural and Biological Sciences(all)
  • Applied Mathematics

Fingerprint Dive into the research topics of 'A computational study of the effect of vasomotion on oxygen transport from capillary networks'. Together they form a unique fingerprint.

Cite this