A computational framework for ultra-high resolution cortical segmentation at 7 Tesla

Pierre Louis Bazin, Marcel Weiss, Juliane Dinse, Andreas Schäfer, Robert Trampel, Robert Turner

Research output: Contribution to journalArticle

Abstract

This paper presents a computational framework for whole brain segmentation of 7. Tesla magnetic resonance images able to handle ultra-high resolution data. The approach combines multi-object topology-preserving deformable models with shape and intensity atlases to encode prior anatomical knowledge in a computationally efficient algorithm. Experimental validation on simulated and real brain images shows accuracy and robustness of the method and demonstrates the benefits of an increased processing resolution.

Original languageEnglish (US)
Pages (from-to)201-209
Number of pages9
JournalNeuroImage
Volume93
DOIs
StatePublished - Jun 1 2014
Externally publishedYes

Fingerprint

Atlases
Brain
Magnetic Resonance Spectroscopy

Keywords

  • 7 Tesla MRI
  • Ultra-high resolution
  • Whole brain segmentation

ASJC Scopus subject areas

  • Cognitive Neuroscience
  • Neurology
  • Medicine(all)

Cite this

Bazin, P. L., Weiss, M., Dinse, J., Schäfer, A., Trampel, R., & Turner, R. (2014). A computational framework for ultra-high resolution cortical segmentation at 7 Tesla. NeuroImage, 93, 201-209. https://doi.org/10.1016/j.neuroimage.2013.03.077

A computational framework for ultra-high resolution cortical segmentation at 7 Tesla. / Bazin, Pierre Louis; Weiss, Marcel; Dinse, Juliane; Schäfer, Andreas; Trampel, Robert; Turner, Robert.

In: NeuroImage, Vol. 93, 01.06.2014, p. 201-209.

Research output: Contribution to journalArticle

Bazin, PL, Weiss, M, Dinse, J, Schäfer, A, Trampel, R & Turner, R 2014, 'A computational framework for ultra-high resolution cortical segmentation at 7 Tesla', NeuroImage, vol. 93, pp. 201-209. https://doi.org/10.1016/j.neuroimage.2013.03.077
Bazin, Pierre Louis ; Weiss, Marcel ; Dinse, Juliane ; Schäfer, Andreas ; Trampel, Robert ; Turner, Robert. / A computational framework for ultra-high resolution cortical segmentation at 7 Tesla. In: NeuroImage. 2014 ; Vol. 93. pp. 201-209.
@article{8403899f9c0540a2902e753dda47f381,
title = "A computational framework for ultra-high resolution cortical segmentation at 7 Tesla",
abstract = "This paper presents a computational framework for whole brain segmentation of 7. Tesla magnetic resonance images able to handle ultra-high resolution data. The approach combines multi-object topology-preserving deformable models with shape and intensity atlases to encode prior anatomical knowledge in a computationally efficient algorithm. Experimental validation on simulated and real brain images shows accuracy and robustness of the method and demonstrates the benefits of an increased processing resolution.",
keywords = "7 Tesla MRI, Ultra-high resolution, Whole brain segmentation",
author = "Bazin, {Pierre Louis} and Marcel Weiss and Juliane Dinse and Andreas Sch{\"a}fer and Robert Trampel and Robert Turner",
year = "2014",
month = "6",
day = "1",
doi = "10.1016/j.neuroimage.2013.03.077",
language = "English (US)",
volume = "93",
pages = "201--209",
journal = "NeuroImage",
issn = "1053-8119",
publisher = "Academic Press Inc.",

}

TY - JOUR

T1 - A computational framework for ultra-high resolution cortical segmentation at 7 Tesla

AU - Bazin, Pierre Louis

AU - Weiss, Marcel

AU - Dinse, Juliane

AU - Schäfer, Andreas

AU - Trampel, Robert

AU - Turner, Robert

PY - 2014/6/1

Y1 - 2014/6/1

N2 - This paper presents a computational framework for whole brain segmentation of 7. Tesla magnetic resonance images able to handle ultra-high resolution data. The approach combines multi-object topology-preserving deformable models with shape and intensity atlases to encode prior anatomical knowledge in a computationally efficient algorithm. Experimental validation on simulated and real brain images shows accuracy and robustness of the method and demonstrates the benefits of an increased processing resolution.

AB - This paper presents a computational framework for whole brain segmentation of 7. Tesla magnetic resonance images able to handle ultra-high resolution data. The approach combines multi-object topology-preserving deformable models with shape and intensity atlases to encode prior anatomical knowledge in a computationally efficient algorithm. Experimental validation on simulated and real brain images shows accuracy and robustness of the method and demonstrates the benefits of an increased processing resolution.

KW - 7 Tesla MRI

KW - Ultra-high resolution

KW - Whole brain segmentation

UR - http://www.scopus.com/inward/record.url?scp=84903269600&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84903269600&partnerID=8YFLogxK

U2 - 10.1016/j.neuroimage.2013.03.077

DO - 10.1016/j.neuroimage.2013.03.077

M3 - Article

C2 - 23623972

AN - SCOPUS:84903269600

VL - 93

SP - 201

EP - 209

JO - NeuroImage

JF - NeuroImage

SN - 1053-8119

ER -