A comprehensive, high-resolution map of a Gene's fitness landscape

Elad Firnberg, Jason W. Labonte, Jeffrey J. Gray, Marc Ostermeier

Research output: Contribution to journalArticlepeer-review

132 Scopus citations


Mutations are central to evolution, providing the genetic variation upon which selection acts. A mutation's effect on the suitability of a gene to perform a particular function (gene fitness) can be positive, negative, or neutral. Knowledge of the distribution of fitness effects (DFE) of mutations is fundamental for understanding evolutionary dynamics, molecular-level genetic variation, complex genetic disease, the accumulation of deleterious mutations, and the molecular clock. We present comprehensive DFEs for point and codon mutants of the Escherichia coli TEM-1 β-lactamase gene and missense mutations in the TEM-1 protein. These DFEs provide insight into the inherent benefits of the genetic code's architecture, support for the hypothesis that mRNA stability dictates codon usage at the beginning of genes, an extensive framework for understanding protein mutational tolerance, and evidence that mutational effects on protein thermodynamic stability shape the DFE. Contrary to prevailing expectations, we find that deleterious effects of mutation primarily arise from a decrease in specific protein activity and not cellular protein levels.

Original languageEnglish (US)
Pages (from-to)1581-1592
Number of pages12
JournalMolecular biology and evolution
Issue number6
StatePublished - Jun 2014


  • beta-lactamase
  • fitness landscape
  • protein evolution

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Molecular Biology
  • Genetics


Dive into the research topics of 'A comprehensive, high-resolution map of a Gene's fitness landscape'. Together they form a unique fingerprint.

Cite this