A compartmental model for oxygen transport in brain microcirculation in the presence of blood substitutes

Maithili Sharan, Aleksander S Popel

Research output: Contribution to journalArticle

Abstract

A compartmental model is developed for oxygen (O2) transport in brain microcirculation in the presence of blood substitutes (hemoglobin-based oxygen carriers). The cerebrovascular bed is represented as a series of vascular compartments, on the basis of diameters, surrounded by a tissue compartment. A mixture of red blood cells (RBC) and plasma/extracellular hemoglobin solution flows through the vascular bed from the arterioles through the capillaries to the venules. Oxygen is transported by convection in the vascular compartments and by diffusion in the surrounding tissue where it is utilized. Intravascular resistance and the diffusive loss of oxygen from the arterioles to the tissue are incorporated in the model. The model predicts that most of the O2 transport occurs at the level of capillaries. Results computed from the present model in the presence of hemoglobin-based oxygen carriers are consistent with those obtained from the earlier validated model (Sharan et al., 1989, 1998a) on oxygen transport in brain circulation in the absence of extracellular hemoglobin. We have found that: (a) precapillary PO2 gradients increase as PO2 in the arterial blood increases, P50p (oxygen tension at 50% saturation of hemoglobin with O2 in plasma) decreases, i.e. O2 affinity of the extracellular hemoglobin is increased, the flow rate of the mixture decreases, hematocrit decreases at constant flow, metabolic rate increases, and intravascular transport resistance in the arterioles is neglected; (b) precapillary PO2 gradients are not sensitive to (i) intracapillary transport resistance, (ii) cooperativity (np) of hemoglobin with oxygen in plasma, (iii) hemoglobin concentration in the plasma and (iv) hematocrit when accounting for viscosity variation in the flow; (c) tissue PO2 is not sensitive to the variation of intravascular transport resistance in the arterioles. We also found that tissue PO2 is a non-monotonic function of the Hill coefficient np for the extracellular hemoglobin with a maximum occurring when np equals the blood Hill coefficient. The results of the computations give estimates of the magnitudes of the increases in tissue PO2 as arterial PO2 increases, P50p increases, flow rate increases, hematocrit increases, hemoglobin concentration in the plasma increases, metabolic rate decreases, the capillary mass transfer coefficient increases or the intracapillary transport resistance decreases.

Original languageEnglish (US)
Pages (from-to)479-500
Number of pages22
JournalJournal of Theoretical Biology
Volume216
Issue number4
DOIs
StatePublished - 2002

Fingerprint

Blood substitutes
Microcirculation
Blood Substitutes
Compartmental Model
Hemoglobin
Substitute
Blood
Oxygen
hemoglobin
Brain
Hemoglobins
brain
oxygen
blood
Tissue
Arterioles
Plasma
Plasmas
Decrease
Hematocrit

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)

Cite this

A compartmental model for oxygen transport in brain microcirculation in the presence of blood substitutes. / Sharan, Maithili; Popel, Aleksander S.

In: Journal of Theoretical Biology, Vol. 216, No. 4, 2002, p. 479-500.

Research output: Contribution to journalArticle

@article{0d9ab43968ee4c9692c27a4fe222fa7e,
title = "A compartmental model for oxygen transport in brain microcirculation in the presence of blood substitutes",
abstract = "A compartmental model is developed for oxygen (O2) transport in brain microcirculation in the presence of blood substitutes (hemoglobin-based oxygen carriers). The cerebrovascular bed is represented as a series of vascular compartments, on the basis of diameters, surrounded by a tissue compartment. A mixture of red blood cells (RBC) and plasma/extracellular hemoglobin solution flows through the vascular bed from the arterioles through the capillaries to the venules. Oxygen is transported by convection in the vascular compartments and by diffusion in the surrounding tissue where it is utilized. Intravascular resistance and the diffusive loss of oxygen from the arterioles to the tissue are incorporated in the model. The model predicts that most of the O2 transport occurs at the level of capillaries. Results computed from the present model in the presence of hemoglobin-based oxygen carriers are consistent with those obtained from the earlier validated model (Sharan et al., 1989, 1998a) on oxygen transport in brain circulation in the absence of extracellular hemoglobin. We have found that: (a) precapillary PO2 gradients increase as PO2 in the arterial blood increases, P50p (oxygen tension at 50{\%} saturation of hemoglobin with O2 in plasma) decreases, i.e. O2 affinity of the extracellular hemoglobin is increased, the flow rate of the mixture decreases, hematocrit decreases at constant flow, metabolic rate increases, and intravascular transport resistance in the arterioles is neglected; (b) precapillary PO2 gradients are not sensitive to (i) intracapillary transport resistance, (ii) cooperativity (np) of hemoglobin with oxygen in plasma, (iii) hemoglobin concentration in the plasma and (iv) hematocrit when accounting for viscosity variation in the flow; (c) tissue PO2 is not sensitive to the variation of intravascular transport resistance in the arterioles. We also found that tissue PO2 is a non-monotonic function of the Hill coefficient np for the extracellular hemoglobin with a maximum occurring when np equals the blood Hill coefficient. The results of the computations give estimates of the magnitudes of the increases in tissue PO2 as arterial PO2 increases, P50p increases, flow rate increases, hematocrit increases, hemoglobin concentration in the plasma increases, metabolic rate decreases, the capillary mass transfer coefficient increases or the intracapillary transport resistance decreases.",
author = "Maithili Sharan and Popel, {Aleksander S}",
year = "2002",
doi = "10.1006/jtbi.2002.3001",
language = "English (US)",
volume = "216",
pages = "479--500",
journal = "Journal of Theoretical Biology",
issn = "0022-5193",
publisher = "Academic Press Inc.",
number = "4",

}

TY - JOUR

T1 - A compartmental model for oxygen transport in brain microcirculation in the presence of blood substitutes

AU - Sharan, Maithili

AU - Popel, Aleksander S

PY - 2002

Y1 - 2002

N2 - A compartmental model is developed for oxygen (O2) transport in brain microcirculation in the presence of blood substitutes (hemoglobin-based oxygen carriers). The cerebrovascular bed is represented as a series of vascular compartments, on the basis of diameters, surrounded by a tissue compartment. A mixture of red blood cells (RBC) and plasma/extracellular hemoglobin solution flows through the vascular bed from the arterioles through the capillaries to the venules. Oxygen is transported by convection in the vascular compartments and by diffusion in the surrounding tissue where it is utilized. Intravascular resistance and the diffusive loss of oxygen from the arterioles to the tissue are incorporated in the model. The model predicts that most of the O2 transport occurs at the level of capillaries. Results computed from the present model in the presence of hemoglobin-based oxygen carriers are consistent with those obtained from the earlier validated model (Sharan et al., 1989, 1998a) on oxygen transport in brain circulation in the absence of extracellular hemoglobin. We have found that: (a) precapillary PO2 gradients increase as PO2 in the arterial blood increases, P50p (oxygen tension at 50% saturation of hemoglobin with O2 in plasma) decreases, i.e. O2 affinity of the extracellular hemoglobin is increased, the flow rate of the mixture decreases, hematocrit decreases at constant flow, metabolic rate increases, and intravascular transport resistance in the arterioles is neglected; (b) precapillary PO2 gradients are not sensitive to (i) intracapillary transport resistance, (ii) cooperativity (np) of hemoglobin with oxygen in plasma, (iii) hemoglobin concentration in the plasma and (iv) hematocrit when accounting for viscosity variation in the flow; (c) tissue PO2 is not sensitive to the variation of intravascular transport resistance in the arterioles. We also found that tissue PO2 is a non-monotonic function of the Hill coefficient np for the extracellular hemoglobin with a maximum occurring when np equals the blood Hill coefficient. The results of the computations give estimates of the magnitudes of the increases in tissue PO2 as arterial PO2 increases, P50p increases, flow rate increases, hematocrit increases, hemoglobin concentration in the plasma increases, metabolic rate decreases, the capillary mass transfer coefficient increases or the intracapillary transport resistance decreases.

AB - A compartmental model is developed for oxygen (O2) transport in brain microcirculation in the presence of blood substitutes (hemoglobin-based oxygen carriers). The cerebrovascular bed is represented as a series of vascular compartments, on the basis of diameters, surrounded by a tissue compartment. A mixture of red blood cells (RBC) and plasma/extracellular hemoglobin solution flows through the vascular bed from the arterioles through the capillaries to the venules. Oxygen is transported by convection in the vascular compartments and by diffusion in the surrounding tissue where it is utilized. Intravascular resistance and the diffusive loss of oxygen from the arterioles to the tissue are incorporated in the model. The model predicts that most of the O2 transport occurs at the level of capillaries. Results computed from the present model in the presence of hemoglobin-based oxygen carriers are consistent with those obtained from the earlier validated model (Sharan et al., 1989, 1998a) on oxygen transport in brain circulation in the absence of extracellular hemoglobin. We have found that: (a) precapillary PO2 gradients increase as PO2 in the arterial blood increases, P50p (oxygen tension at 50% saturation of hemoglobin with O2 in plasma) decreases, i.e. O2 affinity of the extracellular hemoglobin is increased, the flow rate of the mixture decreases, hematocrit decreases at constant flow, metabolic rate increases, and intravascular transport resistance in the arterioles is neglected; (b) precapillary PO2 gradients are not sensitive to (i) intracapillary transport resistance, (ii) cooperativity (np) of hemoglobin with oxygen in plasma, (iii) hemoglobin concentration in the plasma and (iv) hematocrit when accounting for viscosity variation in the flow; (c) tissue PO2 is not sensitive to the variation of intravascular transport resistance in the arterioles. We also found that tissue PO2 is a non-monotonic function of the Hill coefficient np for the extracellular hemoglobin with a maximum occurring when np equals the blood Hill coefficient. The results of the computations give estimates of the magnitudes of the increases in tissue PO2 as arterial PO2 increases, P50p increases, flow rate increases, hematocrit increases, hemoglobin concentration in the plasma increases, metabolic rate decreases, the capillary mass transfer coefficient increases or the intracapillary transport resistance decreases.

UR - http://www.scopus.com/inward/record.url?scp=0036038908&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036038908&partnerID=8YFLogxK

U2 - 10.1006/jtbi.2002.3001

DO - 10.1006/jtbi.2002.3001

M3 - Article

VL - 216

SP - 479

EP - 500

JO - Journal of Theoretical Biology

JF - Journal of Theoretical Biology

SN - 0022-5193

IS - 4

ER -