A comparison of two methods for estimating DCE-MRI parameters via individual and cohort based AIFs in prostate cancer: A step towards practical implementation

Andriy Fedorov, Jacob Fluckiger, Gregory D. Ayers, Xia Li, Sandeep N. Gupta, Clare Tempany, Robert Mulkern, Thomas E. Yankeelov, Fiona M. Fennessy

Research output: Contribution to journalArticle

Abstract

Multi-parametric Magnetic Resonance Imaging, and specifically Dynamic Contrast Enhanced (DCE) MRI, play increasingly important roles in detection and staging of prostate cancer (PCa). One of the actively investigated approaches to DCE MRI analysis involves pharmacokinetic (PK) modeling to extract quantitative parameters that may be related to microvascular properties of the tissue. It is well-known that the prescribed arterial blood plasma concentration (or Arterial Input Function, AIF) input can have significant effects on the parameters estimated by PK modeling. The purpose of our study was to investigate such effects in DCE MRI data acquired in a typical clinical PCa setting. First, we investigated how the choice of a semi-automated or fully automated image-based individualized AIF (iAIF) estimation method affects the PK parameter values; and second, we examined the use of method-specific averaged AIF (cohort-based, or cAIF) as a means to attenuate the differences between the two AIF estimation methods.Two methods for automated image-based estimation of individualized (patient-specific) AIFs, one of which was previously validated for brain and the other for breast MRI, were compared. cAIFs were constructed by averaging the iAIF curves over the individual patients for each of the two methods. Pharmacokinetic analysis using the Generalized kinetic model and each of the four AIF choices (iAIF and cAIF for each of the two image-based AIF estimation approaches) was applied to derive the volume transfer rate (Ktrans) and extravascular extracellular volume fraction (ve) in the areas of prostate tumor. Differences between the parameters obtained using iAIF and cAIF for a given method (intra-method comparison) as well as inter-method differences were quantified.The study utilized DCE MRI data collected in 17 patients with histologically confirmed PCa. Comparison at the level of the tumor region of interest (ROI) showed that the two automated methods resulted in significantly different (p. e, but not of Ktrans. Comparing cAIF, different estimates for both ve, and Ktrans were obtained. Intra-method comparison between the iAIF- and cAIF-driven analyses showed the lack of effect on ve, while Ktrans values were significantly different for one of the methods.Our results indicate that the choice of the algorithm used for automated image-based AIF determination can lead to significant differences in the values of the estimated PK parameters. Ktrans estimates are more sensitive to the choice between cAIF/iAIF as compared to ve, leading to potentially significant differences depending on the AIF method. These observations may have practical consequences in evaluating the PK analysis results obtained in a multi-site setting.

Original languageEnglish (US)
Pages (from-to)321-329
Number of pages9
JournalMagnetic Resonance Imaging
Volume32
Issue number4
DOIs
StatePublished - 2014
Externally publishedYes

Fingerprint

Magnetic resonance imaging
Pharmacokinetics
Prostatic Neoplasms
Tumors
Volume fraction
Brain
Blood
Tissue
Plasmas
Kinetics
Prostate
Neoplasms
Breast
Magnetic Resonance Imaging

Keywords

  • Arterial Input Function
  • DCE-MRI
  • Pharmacokinetic modeling
  • Prostate cancer
  • Quantitative imaging

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging
  • Biomedical Engineering
  • Medicine(all)

Cite this

A comparison of two methods for estimating DCE-MRI parameters via individual and cohort based AIFs in prostate cancer : A step towards practical implementation. / Fedorov, Andriy; Fluckiger, Jacob; Ayers, Gregory D.; Li, Xia; Gupta, Sandeep N.; Tempany, Clare; Mulkern, Robert; Yankeelov, Thomas E.; Fennessy, Fiona M.

In: Magnetic Resonance Imaging, Vol. 32, No. 4, 2014, p. 321-329.

Research output: Contribution to journalArticle

Fedorov, Andriy ; Fluckiger, Jacob ; Ayers, Gregory D. ; Li, Xia ; Gupta, Sandeep N. ; Tempany, Clare ; Mulkern, Robert ; Yankeelov, Thomas E. ; Fennessy, Fiona M. / A comparison of two methods for estimating DCE-MRI parameters via individual and cohort based AIFs in prostate cancer : A step towards practical implementation. In: Magnetic Resonance Imaging. 2014 ; Vol. 32, No. 4. pp. 321-329.
@article{8ff089ea8da74ff3a5ab56c750b5200b,
title = "A comparison of two methods for estimating DCE-MRI parameters via individual and cohort based AIFs in prostate cancer: A step towards practical implementation",
abstract = "Multi-parametric Magnetic Resonance Imaging, and specifically Dynamic Contrast Enhanced (DCE) MRI, play increasingly important roles in detection and staging of prostate cancer (PCa). One of the actively investigated approaches to DCE MRI analysis involves pharmacokinetic (PK) modeling to extract quantitative parameters that may be related to microvascular properties of the tissue. It is well-known that the prescribed arterial blood plasma concentration (or Arterial Input Function, AIF) input can have significant effects on the parameters estimated by PK modeling. The purpose of our study was to investigate such effects in DCE MRI data acquired in a typical clinical PCa setting. First, we investigated how the choice of a semi-automated or fully automated image-based individualized AIF (iAIF) estimation method affects the PK parameter values; and second, we examined the use of method-specific averaged AIF (cohort-based, or cAIF) as a means to attenuate the differences between the two AIF estimation methods.Two methods for automated image-based estimation of individualized (patient-specific) AIFs, one of which was previously validated for brain and the other for breast MRI, were compared. cAIFs were constructed by averaging the iAIF curves over the individual patients for each of the two methods. Pharmacokinetic analysis using the Generalized kinetic model and each of the four AIF choices (iAIF and cAIF for each of the two image-based AIF estimation approaches) was applied to derive the volume transfer rate (Ktrans) and extravascular extracellular volume fraction (ve) in the areas of prostate tumor. Differences between the parameters obtained using iAIF and cAIF for a given method (intra-method comparison) as well as inter-method differences were quantified.The study utilized DCE MRI data collected in 17 patients with histologically confirmed PCa. Comparison at the level of the tumor region of interest (ROI) showed that the two automated methods resulted in significantly different (p. e, but not of Ktrans. Comparing cAIF, different estimates for both ve, and Ktrans were obtained. Intra-method comparison between the iAIF- and cAIF-driven analyses showed the lack of effect on ve, while Ktrans values were significantly different for one of the methods.Our results indicate that the choice of the algorithm used for automated image-based AIF determination can lead to significant differences in the values of the estimated PK parameters. Ktrans estimates are more sensitive to the choice between cAIF/iAIF as compared to ve, leading to potentially significant differences depending on the AIF method. These observations may have practical consequences in evaluating the PK analysis results obtained in a multi-site setting.",
keywords = "Arterial Input Function, DCE-MRI, Pharmacokinetic modeling, Prostate cancer, Quantitative imaging",
author = "Andriy Fedorov and Jacob Fluckiger and Ayers, {Gregory D.} and Xia Li and Gupta, {Sandeep N.} and Clare Tempany and Robert Mulkern and Yankeelov, {Thomas E.} and Fennessy, {Fiona M.}",
year = "2014",
doi = "10.1016/j.mri.2014.01.004",
language = "English (US)",
volume = "32",
pages = "321--329",
journal = "Magnetic Resonance Imaging",
issn = "0730-725X",
publisher = "Elsevier Inc.",
number = "4",

}

TY - JOUR

T1 - A comparison of two methods for estimating DCE-MRI parameters via individual and cohort based AIFs in prostate cancer

T2 - A step towards practical implementation

AU - Fedorov, Andriy

AU - Fluckiger, Jacob

AU - Ayers, Gregory D.

AU - Li, Xia

AU - Gupta, Sandeep N.

AU - Tempany, Clare

AU - Mulkern, Robert

AU - Yankeelov, Thomas E.

AU - Fennessy, Fiona M.

PY - 2014

Y1 - 2014

N2 - Multi-parametric Magnetic Resonance Imaging, and specifically Dynamic Contrast Enhanced (DCE) MRI, play increasingly important roles in detection and staging of prostate cancer (PCa). One of the actively investigated approaches to DCE MRI analysis involves pharmacokinetic (PK) modeling to extract quantitative parameters that may be related to microvascular properties of the tissue. It is well-known that the prescribed arterial blood plasma concentration (or Arterial Input Function, AIF) input can have significant effects on the parameters estimated by PK modeling. The purpose of our study was to investigate such effects in DCE MRI data acquired in a typical clinical PCa setting. First, we investigated how the choice of a semi-automated or fully automated image-based individualized AIF (iAIF) estimation method affects the PK parameter values; and second, we examined the use of method-specific averaged AIF (cohort-based, or cAIF) as a means to attenuate the differences between the two AIF estimation methods.Two methods for automated image-based estimation of individualized (patient-specific) AIFs, one of which was previously validated for brain and the other for breast MRI, were compared. cAIFs were constructed by averaging the iAIF curves over the individual patients for each of the two methods. Pharmacokinetic analysis using the Generalized kinetic model and each of the four AIF choices (iAIF and cAIF for each of the two image-based AIF estimation approaches) was applied to derive the volume transfer rate (Ktrans) and extravascular extracellular volume fraction (ve) in the areas of prostate tumor. Differences between the parameters obtained using iAIF and cAIF for a given method (intra-method comparison) as well as inter-method differences were quantified.The study utilized DCE MRI data collected in 17 patients with histologically confirmed PCa. Comparison at the level of the tumor region of interest (ROI) showed that the two automated methods resulted in significantly different (p. e, but not of Ktrans. Comparing cAIF, different estimates for both ve, and Ktrans were obtained. Intra-method comparison between the iAIF- and cAIF-driven analyses showed the lack of effect on ve, while Ktrans values were significantly different for one of the methods.Our results indicate that the choice of the algorithm used for automated image-based AIF determination can lead to significant differences in the values of the estimated PK parameters. Ktrans estimates are more sensitive to the choice between cAIF/iAIF as compared to ve, leading to potentially significant differences depending on the AIF method. These observations may have practical consequences in evaluating the PK analysis results obtained in a multi-site setting.

AB - Multi-parametric Magnetic Resonance Imaging, and specifically Dynamic Contrast Enhanced (DCE) MRI, play increasingly important roles in detection and staging of prostate cancer (PCa). One of the actively investigated approaches to DCE MRI analysis involves pharmacokinetic (PK) modeling to extract quantitative parameters that may be related to microvascular properties of the tissue. It is well-known that the prescribed arterial blood plasma concentration (or Arterial Input Function, AIF) input can have significant effects on the parameters estimated by PK modeling. The purpose of our study was to investigate such effects in DCE MRI data acquired in a typical clinical PCa setting. First, we investigated how the choice of a semi-automated or fully automated image-based individualized AIF (iAIF) estimation method affects the PK parameter values; and second, we examined the use of method-specific averaged AIF (cohort-based, or cAIF) as a means to attenuate the differences between the two AIF estimation methods.Two methods for automated image-based estimation of individualized (patient-specific) AIFs, one of which was previously validated for brain and the other for breast MRI, were compared. cAIFs were constructed by averaging the iAIF curves over the individual patients for each of the two methods. Pharmacokinetic analysis using the Generalized kinetic model and each of the four AIF choices (iAIF and cAIF for each of the two image-based AIF estimation approaches) was applied to derive the volume transfer rate (Ktrans) and extravascular extracellular volume fraction (ve) in the areas of prostate tumor. Differences between the parameters obtained using iAIF and cAIF for a given method (intra-method comparison) as well as inter-method differences were quantified.The study utilized DCE MRI data collected in 17 patients with histologically confirmed PCa. Comparison at the level of the tumor region of interest (ROI) showed that the two automated methods resulted in significantly different (p. e, but not of Ktrans. Comparing cAIF, different estimates for both ve, and Ktrans were obtained. Intra-method comparison between the iAIF- and cAIF-driven analyses showed the lack of effect on ve, while Ktrans values were significantly different for one of the methods.Our results indicate that the choice of the algorithm used for automated image-based AIF determination can lead to significant differences in the values of the estimated PK parameters. Ktrans estimates are more sensitive to the choice between cAIF/iAIF as compared to ve, leading to potentially significant differences depending on the AIF method. These observations may have practical consequences in evaluating the PK analysis results obtained in a multi-site setting.

KW - Arterial Input Function

KW - DCE-MRI

KW - Pharmacokinetic modeling

KW - Prostate cancer

KW - Quantitative imaging

UR - http://www.scopus.com/inward/record.url?scp=84896393053&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84896393053&partnerID=8YFLogxK

U2 - 10.1016/j.mri.2014.01.004

DO - 10.1016/j.mri.2014.01.004

M3 - Article

C2 - 24560287

AN - SCOPUS:84896393053

VL - 32

SP - 321

EP - 329

JO - Magnetic Resonance Imaging

JF - Magnetic Resonance Imaging

SN - 0730-725X

IS - 4

ER -