A comparative study of the interactions of synthetic peptides of the skeletal and cardiac troponin I inhibitory region with skeletal and cardiac troponin C

Jennifer E. Van Eyk

Research output: Contribution to journalArticle

Abstract

The cardiac and skeletal TnI inhibitory regions have identical sequences except at position 110 which contains Pro in the skeletal sequence and Thr in the cardiac sequence. The effect of the synthetic TnI inhibitory peptides [skeletal TnI peptide (104-115), cardiac TnI peptide (137-148), and a single Gly-substituted analogue at position 110] on the secondary structure of skeletal and cardiac TnC was investigated. The biphasic increases in ellipticity and tyrosine fluorescence were analyzed to determine the Ca2+ binding constants for the high- and low-affinity Ca2+ binding sites of TnC. Importantly, the skeletal and cardiac TnI peptides altered Ca2+ binding at the low-affinity sites of TnC, but the magnitude and direction of the pCa shifts depended on whether the peptides were bound to skeletal or cardiac TnC. For example, binding of skeletal TnI peptide to skeletal TnC (monitored by CD) caused a pCa shift of +0.30 unit such that a lower Ca2+ concentration was required to fill sites I and II, while binding of this peptide to cardiac TnC caused a pCa shift of -0.35 unit such that a higher Ca2+ concentration was required to fill site II. This is the first report of the alteration at the low-affinity regulatory sites (located in the N-terminal domain) by the skeletal TnI inhibitory peptide, even though the primary peptide binding site is located in the C-terminal domain of TnC, a finding which strongly indicates that there is communication between the two halves of the TnC molecule. As well, the amino acid residue at position 110 of the skeletal TnI sequence is critical, since the Gly-substituted analogue mainly affects the high-affinity Ca2+ binding sites. It is clear that the single amino acid difference in the TnI inhibitory sequence is partly responsible for the biological differences between skeletal and cardiac muscle.

Original languageEnglish (US)
Pages (from-to)9974-9981
Number of pages8
JournalBiochemistry®
Volume30
Issue number41
StatePublished - 1991
Externally publishedYes

Fingerprint

Troponin C
Troponin I
Peptides
Binding Sites
Amino Acids
Tyrosine
Muscle
Myocardium
Skeletal Muscle
Fluorescence
Molecules
Communication

ASJC Scopus subject areas

  • Biochemistry

Cite this

A comparative study of the interactions of synthetic peptides of the skeletal and cardiac troponin I inhibitory region with skeletal and cardiac troponin C. / Van Eyk, Jennifer E.

In: Biochemistry®, Vol. 30, No. 41, 1991, p. 9974-9981.

Research output: Contribution to journalArticle

@article{3dbace6d7eac4ee88e110b5c41ff43f0,
title = "A comparative study of the interactions of synthetic peptides of the skeletal and cardiac troponin I inhibitory region with skeletal and cardiac troponin C",
abstract = "The cardiac and skeletal TnI inhibitory regions have identical sequences except at position 110 which contains Pro in the skeletal sequence and Thr in the cardiac sequence. The effect of the synthetic TnI inhibitory peptides [skeletal TnI peptide (104-115), cardiac TnI peptide (137-148), and a single Gly-substituted analogue at position 110] on the secondary structure of skeletal and cardiac TnC was investigated. The biphasic increases in ellipticity and tyrosine fluorescence were analyzed to determine the Ca2+ binding constants for the high- and low-affinity Ca2+ binding sites of TnC. Importantly, the skeletal and cardiac TnI peptides altered Ca2+ binding at the low-affinity sites of TnC, but the magnitude and direction of the pCa shifts depended on whether the peptides were bound to skeletal or cardiac TnC. For example, binding of skeletal TnI peptide to skeletal TnC (monitored by CD) caused a pCa shift of +0.30 unit such that a lower Ca2+ concentration was required to fill sites I and II, while binding of this peptide to cardiac TnC caused a pCa shift of -0.35 unit such that a higher Ca2+ concentration was required to fill site II. This is the first report of the alteration at the low-affinity regulatory sites (located in the N-terminal domain) by the skeletal TnI inhibitory peptide, even though the primary peptide binding site is located in the C-terminal domain of TnC, a finding which strongly indicates that there is communication between the two halves of the TnC molecule. As well, the amino acid residue at position 110 of the skeletal TnI sequence is critical, since the Gly-substituted analogue mainly affects the high-affinity Ca2+ binding sites. It is clear that the single amino acid difference in the TnI inhibitory sequence is partly responsible for the biological differences between skeletal and cardiac muscle.",
author = "{Van Eyk}, {Jennifer E.}",
year = "1991",
language = "English (US)",
volume = "30",
pages = "9974--9981",
journal = "Biochemistry",
issn = "0006-2960",
publisher = "American Chemical Society",
number = "41",

}

TY - JOUR

T1 - A comparative study of the interactions of synthetic peptides of the skeletal and cardiac troponin I inhibitory region with skeletal and cardiac troponin C

AU - Van Eyk, Jennifer E.

PY - 1991

Y1 - 1991

N2 - The cardiac and skeletal TnI inhibitory regions have identical sequences except at position 110 which contains Pro in the skeletal sequence and Thr in the cardiac sequence. The effect of the synthetic TnI inhibitory peptides [skeletal TnI peptide (104-115), cardiac TnI peptide (137-148), and a single Gly-substituted analogue at position 110] on the secondary structure of skeletal and cardiac TnC was investigated. The biphasic increases in ellipticity and tyrosine fluorescence were analyzed to determine the Ca2+ binding constants for the high- and low-affinity Ca2+ binding sites of TnC. Importantly, the skeletal and cardiac TnI peptides altered Ca2+ binding at the low-affinity sites of TnC, but the magnitude and direction of the pCa shifts depended on whether the peptides were bound to skeletal or cardiac TnC. For example, binding of skeletal TnI peptide to skeletal TnC (monitored by CD) caused a pCa shift of +0.30 unit such that a lower Ca2+ concentration was required to fill sites I and II, while binding of this peptide to cardiac TnC caused a pCa shift of -0.35 unit such that a higher Ca2+ concentration was required to fill site II. This is the first report of the alteration at the low-affinity regulatory sites (located in the N-terminal domain) by the skeletal TnI inhibitory peptide, even though the primary peptide binding site is located in the C-terminal domain of TnC, a finding which strongly indicates that there is communication between the two halves of the TnC molecule. As well, the amino acid residue at position 110 of the skeletal TnI sequence is critical, since the Gly-substituted analogue mainly affects the high-affinity Ca2+ binding sites. It is clear that the single amino acid difference in the TnI inhibitory sequence is partly responsible for the biological differences between skeletal and cardiac muscle.

AB - The cardiac and skeletal TnI inhibitory regions have identical sequences except at position 110 which contains Pro in the skeletal sequence and Thr in the cardiac sequence. The effect of the synthetic TnI inhibitory peptides [skeletal TnI peptide (104-115), cardiac TnI peptide (137-148), and a single Gly-substituted analogue at position 110] on the secondary structure of skeletal and cardiac TnC was investigated. The biphasic increases in ellipticity and tyrosine fluorescence were analyzed to determine the Ca2+ binding constants for the high- and low-affinity Ca2+ binding sites of TnC. Importantly, the skeletal and cardiac TnI peptides altered Ca2+ binding at the low-affinity sites of TnC, but the magnitude and direction of the pCa shifts depended on whether the peptides were bound to skeletal or cardiac TnC. For example, binding of skeletal TnI peptide to skeletal TnC (monitored by CD) caused a pCa shift of +0.30 unit such that a lower Ca2+ concentration was required to fill sites I and II, while binding of this peptide to cardiac TnC caused a pCa shift of -0.35 unit such that a higher Ca2+ concentration was required to fill site II. This is the first report of the alteration at the low-affinity regulatory sites (located in the N-terminal domain) by the skeletal TnI inhibitory peptide, even though the primary peptide binding site is located in the C-terminal domain of TnC, a finding which strongly indicates that there is communication between the two halves of the TnC molecule. As well, the amino acid residue at position 110 of the skeletal TnI sequence is critical, since the Gly-substituted analogue mainly affects the high-affinity Ca2+ binding sites. It is clear that the single amino acid difference in the TnI inhibitory sequence is partly responsible for the biological differences between skeletal and cardiac muscle.

UR - http://www.scopus.com/inward/record.url?scp=0026091724&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0026091724&partnerID=8YFLogxK

M3 - Article

C2 - 1911788

AN - SCOPUS:0026091724

VL - 30

SP - 9974

EP - 9981

JO - Biochemistry

JF - Biochemistry

SN - 0006-2960

IS - 41

ER -