A carboxyl-terminal domain controls the cooperativity for extracellular Ca2+ activation of the human calcium sensing receptor

A study with receptor-green fluorescent protein fusions

Lucio Gama, Gerda E. Breitwieser

Research output: Contribution to journalArticle

Abstract

Calcium sensing receptors are part of a growing G protein-coupled receptor family, which includes metabotropic glutamate, γ-aminoisobutyric acid, and pheromone receptors. The distinctive structural features of this family include large extracellular domains that bind agonist and large intracellular, carboxyl-terminal domains of as yet undefined function(s). We have explored the contribution(s) of the carboxyl terminus of the human calcium sensing receptor (CaR) by assessing extracellular Ca2+-mediated changes in intracellular Ca2+ in individual HEK-293 cells transfected with CaR clones. In-frame fusion of EGFP to the carboxyl terminus of CaR had no effect on either the dose response for extracellular Ca2+ activation or CaR desensitization. Carboxyl-terminal truncations, fused in-frame with EGFP (CaRΔ1024-EGFP, CaRA908-EGFP, CaRΔA886-EGFP, and CaRΔ868-EGFP), were assessed for alterations in Ca2+-dependent activation or desensitization. Significant effects on the dose-response relation for extracellular Ca2+ were observed only for the CaRΔ868 truncation, which exhibited a decreased affinity for extracellular Ca2+ and a decrease in the apparent cooperativity for Ca2+-dependent activation. The alterations in extracellular Ca2+ affinity and cooperativity observed with CaRΔ868 were recapitulated by a point mutation, T876D, in the full-length CaR-EGFP background. All truncations with wild type dose-response relations exhibited desensitization time courses that were comparable to the full-length CaR, whereas the CaRΔ868 receptor desensitized completely after two exposures to 10 mM Ca2+. Interestingly, the CaR point mutation T876D exhibited desensitization comparable to wild type CaR, suggesting that this mutation specifically modifies CaR cooperativity. In conclusion, these studies suggest that amino acid residues between 868 and 886 are critical to the apparent eooperativity of Ca2+-mediated activation of G proteins and to CaR desensitization.

Original languageEnglish (US)
Pages (from-to)29712-29718
Number of pages7
JournalJournal of Biological Chemistry
Volume273
Issue number45
DOIs
StatePublished - Nov 6 1998

Fingerprint

Calcium-Sensing Receptors
Green Fluorescent Proteins
Fusion reactions
Chemical activation
Point Mutation
Pheromone Receptors
Aminoisobutyric Acids
HEK293 Cells
G-Protein-Coupled Receptors
GTP-Binding Proteins
Glutamic Acid

ASJC Scopus subject areas

  • Biochemistry

Cite this

@article{238da52729c74f17b4e7c1e0777c17fc,
title = "A carboxyl-terminal domain controls the cooperativity for extracellular Ca2+ activation of the human calcium sensing receptor: A study with receptor-green fluorescent protein fusions",
abstract = "Calcium sensing receptors are part of a growing G protein-coupled receptor family, which includes metabotropic glutamate, γ-aminoisobutyric acid, and pheromone receptors. The distinctive structural features of this family include large extracellular domains that bind agonist and large intracellular, carboxyl-terminal domains of as yet undefined function(s). We have explored the contribution(s) of the carboxyl terminus of the human calcium sensing receptor (CaR) by assessing extracellular Ca2+-mediated changes in intracellular Ca2+ in individual HEK-293 cells transfected with CaR clones. In-frame fusion of EGFP to the carboxyl terminus of CaR had no effect on either the dose response for extracellular Ca2+ activation or CaR desensitization. Carboxyl-terminal truncations, fused in-frame with EGFP (CaRΔ1024-EGFP, CaRA908-EGFP, CaRΔA886-EGFP, and CaRΔ868-EGFP), were assessed for alterations in Ca2+-dependent activation or desensitization. Significant effects on the dose-response relation for extracellular Ca2+ were observed only for the CaRΔ868 truncation, which exhibited a decreased affinity for extracellular Ca2+ and a decrease in the apparent cooperativity for Ca2+-dependent activation. The alterations in extracellular Ca2+ affinity and cooperativity observed with CaRΔ868 were recapitulated by a point mutation, T876D, in the full-length CaR-EGFP background. All truncations with wild type dose-response relations exhibited desensitization time courses that were comparable to the full-length CaR, whereas the CaRΔ868 receptor desensitized completely after two exposures to 10 mM Ca2+. Interestingly, the CaR point mutation T876D exhibited desensitization comparable to wild type CaR, suggesting that this mutation specifically modifies CaR cooperativity. In conclusion, these studies suggest that amino acid residues between 868 and 886 are critical to the apparent eooperativity of Ca2+-mediated activation of G proteins and to CaR desensitization.",
author = "Lucio Gama and Breitwieser, {Gerda E.}",
year = "1998",
month = "11",
day = "6",
doi = "10.1074/jbc.273.45.29712",
language = "English (US)",
volume = "273",
pages = "29712--29718",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "45",

}

TY - JOUR

T1 - A carboxyl-terminal domain controls the cooperativity for extracellular Ca2+ activation of the human calcium sensing receptor

T2 - A study with receptor-green fluorescent protein fusions

AU - Gama, Lucio

AU - Breitwieser, Gerda E.

PY - 1998/11/6

Y1 - 1998/11/6

N2 - Calcium sensing receptors are part of a growing G protein-coupled receptor family, which includes metabotropic glutamate, γ-aminoisobutyric acid, and pheromone receptors. The distinctive structural features of this family include large extracellular domains that bind agonist and large intracellular, carboxyl-terminal domains of as yet undefined function(s). We have explored the contribution(s) of the carboxyl terminus of the human calcium sensing receptor (CaR) by assessing extracellular Ca2+-mediated changes in intracellular Ca2+ in individual HEK-293 cells transfected with CaR clones. In-frame fusion of EGFP to the carboxyl terminus of CaR had no effect on either the dose response for extracellular Ca2+ activation or CaR desensitization. Carboxyl-terminal truncations, fused in-frame with EGFP (CaRΔ1024-EGFP, CaRA908-EGFP, CaRΔA886-EGFP, and CaRΔ868-EGFP), were assessed for alterations in Ca2+-dependent activation or desensitization. Significant effects on the dose-response relation for extracellular Ca2+ were observed only for the CaRΔ868 truncation, which exhibited a decreased affinity for extracellular Ca2+ and a decrease in the apparent cooperativity for Ca2+-dependent activation. The alterations in extracellular Ca2+ affinity and cooperativity observed with CaRΔ868 were recapitulated by a point mutation, T876D, in the full-length CaR-EGFP background. All truncations with wild type dose-response relations exhibited desensitization time courses that were comparable to the full-length CaR, whereas the CaRΔ868 receptor desensitized completely after two exposures to 10 mM Ca2+. Interestingly, the CaR point mutation T876D exhibited desensitization comparable to wild type CaR, suggesting that this mutation specifically modifies CaR cooperativity. In conclusion, these studies suggest that amino acid residues between 868 and 886 are critical to the apparent eooperativity of Ca2+-mediated activation of G proteins and to CaR desensitization.

AB - Calcium sensing receptors are part of a growing G protein-coupled receptor family, which includes metabotropic glutamate, γ-aminoisobutyric acid, and pheromone receptors. The distinctive structural features of this family include large extracellular domains that bind agonist and large intracellular, carboxyl-terminal domains of as yet undefined function(s). We have explored the contribution(s) of the carboxyl terminus of the human calcium sensing receptor (CaR) by assessing extracellular Ca2+-mediated changes in intracellular Ca2+ in individual HEK-293 cells transfected with CaR clones. In-frame fusion of EGFP to the carboxyl terminus of CaR had no effect on either the dose response for extracellular Ca2+ activation or CaR desensitization. Carboxyl-terminal truncations, fused in-frame with EGFP (CaRΔ1024-EGFP, CaRA908-EGFP, CaRΔA886-EGFP, and CaRΔ868-EGFP), were assessed for alterations in Ca2+-dependent activation or desensitization. Significant effects on the dose-response relation for extracellular Ca2+ were observed only for the CaRΔ868 truncation, which exhibited a decreased affinity for extracellular Ca2+ and a decrease in the apparent cooperativity for Ca2+-dependent activation. The alterations in extracellular Ca2+ affinity and cooperativity observed with CaRΔ868 were recapitulated by a point mutation, T876D, in the full-length CaR-EGFP background. All truncations with wild type dose-response relations exhibited desensitization time courses that were comparable to the full-length CaR, whereas the CaRΔ868 receptor desensitized completely after two exposures to 10 mM Ca2+. Interestingly, the CaR point mutation T876D exhibited desensitization comparable to wild type CaR, suggesting that this mutation specifically modifies CaR cooperativity. In conclusion, these studies suggest that amino acid residues between 868 and 886 are critical to the apparent eooperativity of Ca2+-mediated activation of G proteins and to CaR desensitization.

UR - http://www.scopus.com/inward/record.url?scp=0032491497&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032491497&partnerID=8YFLogxK

U2 - 10.1074/jbc.273.45.29712

DO - 10.1074/jbc.273.45.29712

M3 - Article

VL - 273

SP - 29712

EP - 29718

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 45

ER -