A Bidirectional Neural Interface IC With Chopper Stabilized BioADC Array and Charge Balanced Stimulator

Elliot Greenwald, Ernest So, Qihong Wang, Mohsen Mollazadeh, Christoph Maier, Ralph Etienne-Cummings, Gert Cauwenberghs, Nitish V Thakor

Research output: Contribution to journalArticle


We present a bidirectional neural interface with a 4-channel biopotential analog-to-digital converter (bioADC) and a 4-channel current-mode stimulator in 180 nm CMOS. The bioADC directly transduces microvolt biopotentials into a digital representation without a voltage-amplification stage. Each bioADC channel comprises a continuous-time first-order ∆Σ modulator with a chopper-stabilized OTA input and current feedback, followed by a second-order comb-filter decimator with programmable oversampling ratio. Each stimulator channel contains two independent digital-to-analog converters for anodic and cathodic current generation. A shared calibration circuit matches the amplitude of the anodic and cathodic currents for charge balancing. Powered from a 1.5 V supply, the analog and digital circuits in each recording channel draw on average [Formula: see text] and [Formula: see text] of supply current, respectively. The bioADCs achieve an SNR of [Formula: see text] and a SFDR of [Formula: see text], for better than 9-b ENOB. Intracranial EEG recordings from an anesthetized rat are shown and compared to simultaneous recordings from a commercial reference system to validate performance in-vivo. Additionally, we demonstrate bidirectional operation by recording cardiac modulation induced through vagus nerve stimulation, and closed-loop control of cardiac rhythm. The micropower operation, direct digital readout, and integration of electrical stimulation circuits make this interface ideally suited for closed-loop neuromodulation applications.

Original languageEnglish (US)
JournalIEEE Transactions on Biomedical Circuits and Systems
Publication statusAccepted/In press - Nov 8 2016


ASJC Scopus subject areas

  • Biomedical Engineering
  • Electrical and Electronic Engineering

Cite this