3D-printed surface mould applicator for high-dose-rate brachytherapy

Mark Schumacher, Andras Lasso, Ian Cumming, Adam Rankin, Conrad B. Falkson, L. John Schreiner, Chandra Joshi, Gabor Fichtinger

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

PURPOSE: In contemporary high-dose-rate brachytherapy treatment of superficial tumors, catheters are placed in a wax mould. The creation of current wax models is a difficult and time consuming proces.The irradiation plan can only be computed post-construction and requires a second CT scan. In case no satisfactory dose plan can be created, the mould is discarded and the process is repeated. The objective of this work was to develop an automated method to replace suboptimal wax moulding. METHODS: We developed a method to design and manufacture moulds that guarantee to yield satisfactory dosimetry. A 3D-printed mould with channels for the catheters designed from the patient's CT and mounted on a patient-specific thermoplastic mesh mask. The mould planner was implemented as an open-source module in the 3D Slicer platform. RESULTS: Series of test moulds were created to accommodate standard brachytherapy catheters of 1.70mm diameter. A calibration object was used to conclude that tunnels with a diameter of 2.25mm, minimum 12mm radius of curvature, and 1.0mm open channel gave the best fit for this printer/catheter combination. Moulds were created from the CT scan of thermoplastic mesh masks of actual patients. The patient-specific moulds have been visually verified to fit on the thermoplastic meshes. CONCLUSION: The masks were visually shown to fit onto the thermoplastic meshes, next the resulting dosimetry will have to be compared with treatment plans and dosimetry achieved with conventional wax moulds in order to validate our 3D printed moulds.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2015: Image-Guided Procedures, Robotic Interventions, and Modeling
PublisherSPIE
Volume9415
ISBN (Print)9781628415056
DOIs
StatePublished - 2015
Externally publishedYes
EventMedical Imaging 2015: Image-Guided Procedures, Robotic Interventions, and Modeling - Orlando, United States
Duration: Feb 22 2015Feb 24 2015

Other

OtherMedical Imaging 2015: Image-Guided Procedures, Robotic Interventions, and Modeling
Country/TerritoryUnited States
CityOrlando
Period2/22/152/24/15

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of '3D-printed surface mould applicator for high-dose-rate brachytherapy'. Together they form a unique fingerprint.

Cite this