β-N-acetylglucosamine (O-GlcNAc) is part of the histone code

Kaoru Sakabe, Zihao Wang, Gerald Warren Hart

Research output: Contribution to journalArticlepeer-review

Abstract

Dynamic posttranslational modification of serine and threonine residues of nucleocytoplasmic proteins by β-N-acetylglucosamine (O-GlcNAc) is a regulator of cellular processes such as transcription, signaling, and protein-protein interactions. Like phosphorylation, O-GlcNAc cycles in response to a wide variety of stimuli. Although cycling of O-GlcNAc is catalyzed by only two highly conserved enzymes, O-GlcNAc transferase (OGT), which adds the sugar, and β-N-acetylglucosaminidase (O-GlcNAcase), which hydrolyzes it, the targeting of these enzymes is highly specific and is controlled by myriad interacting subunits. Here, we demonstrate by multiple specific immunological and enzymatic approaches that histones, the proteins that package DNA within the nucleus, are O-GlcNAcylated in vivo. Histones also are substrates for OGT in vitro. We identify O-GlcNAc sites on histones H2A, H2B, and H4 using mass spectrometry. Finally, we show that histone O-GlcNAcylation changes during mitosis and with heat shock. Taken together, these data show that O-GlcNAc cycles dynamically on histones and can be considered part of the histone code.

Original languageEnglish (US)
Pages (from-to)19915-19920
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume107
Issue number46
DOIs
StatePublished - Nov 16 2010

Keywords

  • Epigenetics
  • Histones

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'β-N-acetylglucosamine (O-GlcNAc) is part of the histone code'. Together they form a unique fingerprint.

Cite this