TY - JOUR
T1 - β-adrenergic stimulation synchronizes intracellular Ca2+ release during excitation-contraction coupling in cardiac myocytes
AU - Song, Long Sheng
AU - Wang, Shi Qiang
AU - Xiao, Rui Ping
AU - Spurgeon, Harold
AU - Lakatta, Edward G.
AU - Cheng, Heping
PY - 2001/4/27
Y1 - 2001/4/27
N2 - To elucidate microscopic mechanisms underlying the modulation of cardiac excitation-contraction (EC) coupling by β-adrenergic receptor (β-AR) stimulation, we examined local Ca2+ release function, ie, Ca2+ spikes at individual transverse tubule-sarcoplasmic reticulum (T-SR) junctions, using confocal microscopy and our recently developed technique for release flux measurement. β-AR stimulation by norepinephrine plus an α1-adrenergic blocker, prazosin, increased the amplitude of SR Ca2+ release flux (JSR), its running integral (∫JSR), and L-type Ca2+ channel current (ICa, and it shifted their bell-shaped voltage dependence leftward by ≈ 10 mV, with the relative effects ranking ICa> JSR>∫JSR. Confocal imaging revealed that the bell-shaped voltage dependence of SR Ca2+ release is attributable to a graded recruitment of T-SR junctions as well as to changes in Ca2+ spike amplitudes. β-AR stimulation increased the fractional T-SR junctions that fired Ca2+ spikes and augmented Ca2+ spike amplitudes, without altering the SR Ca2+ load, suggesting that more release units were activated synchronously among and within T-SR junctions. Moreover, β-AR stimulation decreased the latency and temporal dispersion of Ca2+ spike occurrence at a given voltage, delivering most of the Ca2+ at the onset of depolarization rather than spreading it out throughout depolarization. Because the synchrony of Ca2+ spikes affects Ca2+ delivery per unit of time to contractile myofilaments, and because the: myofilaments display a steep Ca2+ dependence, our data suggest that synchronization of SR Ca2+ release represents a heretofore unappreciated mechanism of β-AR modulation of cardiac inotropy.
AB - To elucidate microscopic mechanisms underlying the modulation of cardiac excitation-contraction (EC) coupling by β-adrenergic receptor (β-AR) stimulation, we examined local Ca2+ release function, ie, Ca2+ spikes at individual transverse tubule-sarcoplasmic reticulum (T-SR) junctions, using confocal microscopy and our recently developed technique for release flux measurement. β-AR stimulation by norepinephrine plus an α1-adrenergic blocker, prazosin, increased the amplitude of SR Ca2+ release flux (JSR), its running integral (∫JSR), and L-type Ca2+ channel current (ICa, and it shifted their bell-shaped voltage dependence leftward by ≈ 10 mV, with the relative effects ranking ICa> JSR>∫JSR. Confocal imaging revealed that the bell-shaped voltage dependence of SR Ca2+ release is attributable to a graded recruitment of T-SR junctions as well as to changes in Ca2+ spike amplitudes. β-AR stimulation increased the fractional T-SR junctions that fired Ca2+ spikes and augmented Ca2+ spike amplitudes, without altering the SR Ca2+ load, suggesting that more release units were activated synchronously among and within T-SR junctions. Moreover, β-AR stimulation decreased the latency and temporal dispersion of Ca2+ spike occurrence at a given voltage, delivering most of the Ca2+ at the onset of depolarization rather than spreading it out throughout depolarization. Because the synchrony of Ca2+ spikes affects Ca2+ delivery per unit of time to contractile myofilaments, and because the: myofilaments display a steep Ca2+ dependence, our data suggest that synchronization of SR Ca2+ release represents a heretofore unappreciated mechanism of β-AR modulation of cardiac inotropy.
KW - Excitation-contraction coupling
KW - Heart cells
KW - Ryanodine receptors
KW - β-adrenergic receptor
UR - http://www.scopus.com/inward/record.url?scp=0035957634&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035957634&partnerID=8YFLogxK
U2 - 10.1161/hh0801.090461
DO - 10.1161/hh0801.090461
M3 - Article
C2 - 11325871
AN - SCOPUS:0035957634
SN - 0009-7330
VL - 88
SP - 794
EP - 801
JO - Circulation Research
JF - Circulation Research
IS - 8
ER -